Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
1.
J Virol ; 97(10): e0112423, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37792002

RESUMO

IMPORTANCE: Many plant proteins and some proteins from plant pathogens are dually targeted to chloroplasts and mitochondria, and are supposed to be transported along the general pathways for organellar protein import, but this issue has not been explored yet. Moreover, organellar translocon receptors exist as families of several members whose functional specialization in different cargos is supposed but not thoroughly studied. This article provides novel insights into such topics showing for the first time that an exogenous protein, the melon necrotic spot virus coat protein, exploits the common Toc/Tom import systems to enter both mitochondria and chloroplasts while identifying the involved specific receptors.


Assuntos
Arabidopsis , Proteínas do Capsídeo , Cloroplastos , Mitocôndrias , Proteínas de Plantas , Receptores de Superfície Celular , Arabidopsis/metabolismo , Arabidopsis/virologia , Proteínas do Capsídeo/metabolismo , Proteínas de Transporte/metabolismo , Cloroplastos/metabolismo , Cloroplastos/virologia , Mitocôndrias/metabolismo , Mitocôndrias/virologia , /virologia , Proteínas de Plantas/metabolismo , Transporte Proteico , Receptores de Superfície Celular/metabolismo
2.
Life Sci ; 313: 121271, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36526048

RESUMO

Mitochondria are dynamic cellular organelles with diverse functions including energy production, calcium homeostasis, apoptosis, host innate immune signaling, and disease progression. Several viral proteins specifically target mitochondria to subvert host defense as mitochondria stand out as the most suitable target for the invading viruses. They have acquired the capability to control apoptosis, metabolic state, and evade immune responses in host cells, by targeting mitochondria. In this way, the viruses successfully allow the spread of viral progeny and thus the infection. Viruses employ their proteins to alter mitochondrial dynamics and their specific functions by a modulation of membrane potential, reactive oxygen species, calcium homeostasis, and mitochondrial bioenergetics to help them achieve a state of persistent infection. A better understanding of such viral proteins and their impact on mitochondrial forms and functions is the main focus of this review. We also attempt to emphasize the importance of exploring the role of mitochondria in the context of SARS-CoV2 pathogenesis and identify host-virus protein interactions.


Assuntos
Mitocôndrias , Proteínas Virais , Humanos , Cálcio/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/virologia , RNA Viral/metabolismo , Proteínas Virais/metabolismo , Vírus/patogenicidade
3.
J Biol Chem ; 298(9): 102280, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35863430

RESUMO

Transmissible gastroenteritis virus (TGEV), a member of the coronavirus family, is the pathogen responsible for transmissible gastroenteritis, which results in mitochondrial dysfunction in host cells. Previously, we identified 123 differentially expressed circular RNAs (cRNA)from the TGEV-infected porcine intestinal epithelial cell line jejunum 2 (IPEC-J2). Previous bioinformatics analysis suggested that, of these, circBIRC6 had the potential to regulate mitochondrial function. Furthermore, mitochondrial permeability transition, a key step in the process of mitochondrial dysfunction, is known to be caused by abnormal opening of mitochondrial permeability transition pores (mPTPs) regulated by the voltage-dependent anion-selective channel protein 1 (VDAC)-Cyclophilin D (CypD) complex. Therefore, in the present study, we investigated the effects of circBIRC6-2 on mitochondrial dysfunction and opening of mPTPs. We found that TGEV infection reduced circBIRC6-2 levels, which in turn reduced mitochondrial calcium (Ca2+) levels, the decrease of mitochondrial membrane potential, and opening of mPTPs. In addition, we also identified ORFs and internal ribosomal entrance sites within the circBIRC6-2 RNA. We demonstrate circBIRC6-2 encodes a novel protein, BIRC6-236aa, which we show inhibits TGEV-induced opening of mPTPs during TGEV infection. Mechanistically, we identified an interaction between BIRC6-236aa and VDAC1, suggesting that BIRC6-236aa destabilizes the VDAC1-CypD complex. Taken together, the results suggest that the novel protein BIRC6-236aa encoded by cRNA circBIRC6-2 inhibits mPTP opening and subsequent mitochondrial dysfunction by interacting with VDAC1.


Assuntos
Proteínas Inibidoras de Apoptose , Mitocôndrias , Poro de Transição de Permeabilidade Mitocondrial , RNA Circular , Vírus da Gastroenterite Transmissível , Animais , Cálcio/metabolismo , Linhagem Celular , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Mitocôndrias/virologia , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Suínos , Vírus da Gastroenterite Transmissível/genética , Vírus da Gastroenterite Transmissível/fisiologia , Canal de Ânion 1 Dependente de Voltagem/metabolismo
4.
Bull Exp Biol Med ; 172(4): 495-498, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35175481

RESUMO

The measurement of the level of mitochondrial DNA (mtDNA) in the blood is a difficult problem due to high variability of mitochondrial genes, deletions in the mitochondrial genome in some pathological conditions, different sources of mtDNA into the bloodstream (mtDNA from tissues, from blood cells, etc.). We designed primers and TaqMan probes for highly conserved regions of the ND1 and ND2 genes outside the mitochondrial deletions "hot zones". For standardizing the technique, the true concentration of low-molecular-weight mtDNA was determined by real-time PCR for two targets: a fragment of the ND2 gene (122 bp) and the ND1 and ND2 genes (1198 bp). The sensitivity and specificity of the developed approach were verified on a DNA pool isolated from the blood plasma of healthy donors of various nationalities. The concentration of low-molecular-weight mtDNA in the blood plasma of two patients with COVID-19 was monitored over two weeks of inpatient treatment. A significant increase in the content of low-molecular-weight mtDNA was observed during the first 5 days after hospitalization, followed by a drop to the level of healthy donors. The developed technique makes it possible to assess the blood level of low-molecular-weight mtDNA regardless of the quality of sampling and makes it possible to standardize this biological marker in a wide range of infectious and non-infectious pathologies.


Assuntos
COVID-19/metabolismo , Ácidos Nucleicos Livres/genética , DNA Mitocondrial/genética , NADH Desidrogenase/genética , Reação em Cadeia da Polimerase em Tempo Real/normas , Adulto , Idoso , COVID-19/virologia , Estudos de Casos e Controles , Ácidos Nucleicos Livres/sangue , Primers do DNA/síntese química , DNA Mitocondrial/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/genética , Mitocôndrias/virologia , NADH Desidrogenase/sangue , Reação em Cadeia da Polimerase em Tempo Real/métodos , SARS-CoV-2/patogenicidade
5.
Int J Mol Sci ; 23(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35216211

RESUMO

The ongoing COVID-19 pandemic dictated new priorities in biomedicine research. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, is a single-stranded positive-sense RNA virus. In this pilot study, we optimized our padlock assay to visualize genomic and subgenomic regions using formalin-fixed paraffin-embedded placental samples obtained from a confirmed case of COVID-19. SARS-CoV-2 RNA was localized in trophoblastic cells. We also checked the presence of the virion by immunolocalization of its glycoprotein spike. In addition, we imaged mitochondria of placental villi keeping in mind that the mitochondrion has been suggested as a potential residence of the SARS-CoV-2 genome. We observed a substantial overlapping of SARS-CoV-2 RNA and mitochondria in trophoblastic cells. This intriguing linkage correlated with an aberrant mitochondrial network. Overall, to the best of our knowledge, this is the first study that provides evidence of colocalization of the SARS-CoV-2 genome and mitochondria in SARS-CoV-2 infected tissue. These findings also support the notion that SARS-CoV-2 infection can reprogram mitochondrial activity in the highly specialized maternal-fetal interface.


Assuntos
Mitocôndrias/virologia , Técnicas de Amplificação de Ácido Nucleico/métodos , Placenta/virologia , RNA Viral/metabolismo , SARS-CoV-2/genética , Adulto , COVID-19/patologia , COVID-19/virologia , Sondas de DNA/metabolismo , Feminino , Humanos , Projetos Piloto , Placenta/patologia , Gravidez , SARS-CoV-2/isolamento & purificação
6.
Virology ; 567: 34-46, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34953294

RESUMO

The bovine viral diarrhea virus 1 (BVDV-1), belonging to the Pestivirus genus, is characterized by the presence of two biotypes, cytopathogenic (cp) or non-cytopathogenic (ncp). For a better understanding of the host pathogen interactions, we set out to identify transcriptomic signatures of bovine lung primary cells (BPCs) infected with a cp or a ncp strain. For this, we used both a targeted approach by reverse transcription droplet digital PCR and whole genome approach using RNAseq. Data analysis showed 3571 differentially expressed transcripts over time (Fold Change >2) and revealed that the most deregulated pathways for cp strain are signaling pathways involved in responses to viral infection such as inflammatory response or apoptosis pathways. Interestingly, our data analysis revealed a deregulation of Wnt signaling pathway, a pathway described in embryogenesis, that was specifically seen with the BVDV-1 cp but not the ncp suggesting a role of this pathway in viral replication.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Doença das Mucosas por Vírus da Diarreia Viral Bovina/genética , Efeito Citopatogênico Viral/genética , Vírus da Diarreia Viral Bovina Tipo 1/genética , Transcriptoma , Via de Sinalização Wnt/genética , Animais , Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Doença das Mucosas por Vírus da Diarreia Viral Bovina/metabolismo , Doença das Mucosas por Vírus da Diarreia Viral Bovina/patologia , Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Bovinos , Vírus da Diarreia Viral Bovina Tipo 1/metabolismo , Vírus da Diarreia Viral Bovina Tipo 1/patogenicidade , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Interleucinas/genética , Interleucinas/metabolismo , Pulmão/metabolismo , Pulmão/virologia , Potencial da Membrana Mitocondrial , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/virologia , NF-kappa B/genética , NF-kappa B/metabolismo , Cultura Primária de Células , Mucosa Respiratória/metabolismo , Mucosa Respiratória/virologia , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Replicação Viral
7.
mBio ; 12(6): e0255721, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34809467

RESUMO

Viruses have evolved a plethora of mechanisms to impair host innate immune responses. Herpes simplex virus type 1 (HSV-1), a double-stranded linear DNA virus, impairs the mitochondrial network and dynamics predominantly through the UL12.5 gene. We demonstrated that HSV-1 infection induced a remodeling of mitochondrial shape, resulting in a fragmentation of the mitochondria associated with a decrease in their volume and an increase in their sphericity. This damage leads to the release of mitochondrial DNA (mtDNA) to the cytosol. By generating a stable THP-1 cell line expressing the DNase I-mCherry fusion protein and a THP-1 cell line specifically depleted of mtDNA upon ethidium bromide treatment, we showed that cytosolic mtDNA contributes to type I interferon and APOBEC3A upregulation. This was confirmed by using an HSV-1 strain (KOS37 UL98-SPA) with a deletion of the UL12.5 gene that impaired its ability to induce mtDNA stress. Furthermore, by using an inhibitor of RNA polymerase III, we demonstrated that upon HSV-1 infection, cytosolic mtDNA enhanced type I interferon induction through the RNA polymerase III/RIG-I pathway. APOBEC3A was in turn induced by interferon. Deep sequencing analyses of cytosolic mtDNA mutations revealed an APOBEC3A signature predominantly in the 5'TpCpG context. These data demonstrate that upon HSV-1 infection, the mitochondrial network is disrupted, leading to the release of mtDNA and ultimately to its catabolism through APOBEC3-induced mutations. IMPORTANCE Herpes simplex virus 1 (HSV-1) impairs the mitochondrial network through the viral protein UL12.5. This leads to the fusion of mitochondria and simultaneous release of mitochondrial DNA (mtDNA) in a mouse model. We have shown that released mtDNA is recognized as a danger signal, capable of stimulating signaling pathways and inducing the production of proinflammatory cytokines. The expression of the human cytidine deaminase APOBEC3A is highly upregulated by interferon responses. This enzyme catalyzes the deamination of cytidine to uridine in single-stranded DNA substrates, resulting in the catabolism of edited DNA. Using human cell lines deprived of mtDNA and viral strains deficient in UL12, we demonstrated the implication of mtDNA in the production of interferon and APOBEC3A expression during viral infection. We have shown that HSV-1 induces mitochondrial network fragmentation in a human model and confirmed the implication of RNA polymerase III/RIG-I signaling in the capture of cytosolic mtDNA.


Assuntos
Proteína DEAD-box 58/metabolismo , Herpes Simples/metabolismo , Herpesvirus Humano 1/fisiologia , Interferon beta/metabolismo , Mitocôndrias/virologia , RNA Polimerase III/metabolismo , Receptores Imunológicos/metabolismo , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Proteína DEAD-box 58/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Desoxirribonucleases/genética , Desoxirribonucleases/metabolismo , Herpes Simples/genética , Herpes Simples/virologia , Herpesvirus Humano 1/genética , Interações Hospedeiro-Patógeno , Humanos , Interferon beta/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas/genética , Proteínas/metabolismo , RNA Polimerase III/genética , Receptores Imunológicos/genética , Transdução de Sinais , Proteínas Virais/genética , Proteínas Virais/metabolismo
8.
Sci Rep ; 11(1): 21048, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702948

RESUMO

Viruses need cells for their replication and, therefore, ways to hijack cellular functions. Mitochondria play fundamental roles within the cell in metabolism, immunity and regulation of homeostasis due to which some viruses aim to alter mitochondrial functions. Herein we show that the nucleoprotein (NP) of arenaviruses enters the mitochondria of infected cells, affecting the mitochondrial morphology. Reptarenaviruses cause boid inclusion body disease (BIBD) that is characterized, especially in boas, by the formation of cytoplasmic inclusion bodies (IBs) comprising reptarenavirus NP within the infected cells. We initiated this study after observing electron-dense material reminiscent of IBs within the mitochondria of reptarenavirus infected boid cell cultures in an ultrastructural study. We employed immuno-electron microscopy to confirm that the mitochondrial inclusions indeed contain reptarenavirus NP. Mutations to a putative N-terminal mitochondrial targeting signal (MTS), identified via software predictions in both mamm- and reptarenavirus NPs, did not affect the mitochondrial localization of NP, suggesting that it occurs independently of MTS. In support of MTS-independent translocation, we did not detect cleavage of the putative MTSs of arenavirus NPs in reptilian or mammalian cells. Furthermore, in vitro translated NPs could not enter isolated mitochondria, suggesting that the translocation requires cellular factors or conditions. Our findings suggest that MTS-independent mitochondrial translocation of NP is a shared feature among arenaviruses. We speculate that by targeting the mitochondria arenaviruses aim to alter mitochondrial metabolism and homeostasis or affect the cellular defense.


Assuntos
Arenaviridae/metabolismo , Boidae/virologia , Corpos de Inclusão Viral/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/virologia , Nucleoproteínas/metabolismo , Animais , Arenaviridae/classificação , Arenaviridae/genética , Chlorocebus aethiops , Corpos de Inclusão Viral/genética , Mitocôndrias/genética , Nucleoproteínas/genética , Células Vero
9.
Viruses ; 13(10)2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34696420

RESUMO

The mitochondrial antiviral signaling (MAVS) protein, a critical adapter, links the upstream recognition of viral RNA to downstream antiviral signal transduction. However, the interaction mechanism between avian metapneumovirus subgroup C (aMPV/C) infection and MAVS remains unclear. Here, we confirmed that aMPV/C infection induced a reduction in MAVS expression in Vero cells in a dose-dependent manner, and active aMPV/C replication was required for MAVS decrease. We also found that the reduction in MAVS occurred at the post-translational level rather than at the transcriptional level. Different inhibitors were used to examine the effect of proteasome or autophagy on the regulation of MAVS. Treatment with a proteasome inhibitor MG132 effectively blocked MAVS degradation. Moreover, we demonstrated that MAVS mainly underwent K48-linked ubiquitination in the presence of MG132 in aMPV/C-infected cells, with amino acids 363, 462, and 501 of MAVS being pivotal sites in the formation of polyubiquitin chains. Finally, E3 ubiquitin ligases for MAVS degradation were screened and identified and RNF5 targeting MAVS at Lysine 363 and 462 was shown to involve in MAVS degradation in aMPV/C-infected Vero cells. Overall, these results reveal the molecular mechanism underlying aMPV/C infection-induced MAVS degradation by the ubiquitin-proteasome pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Metapneumovirus/metabolismo , Mitocôndrias/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Chlorocebus aethiops , Leupeptinas/farmacologia , Metapneumovirus/patogenicidade , Mitocôndrias/metabolismo , Mitocôndrias/virologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Transdução de Sinais/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Células Vero
10.
PLoS Pathog ; 17(10): e1009841, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34648591

RESUMO

In general, in mammalian cells, cytosolic DNA viruses are sensed by cyclic GMP-AMP synthase (cGAS), and RNA viruses are recognized by retinoic acid-inducible gene I (RIG-I)-like receptors, triggering a series of downstream innate antiviral signaling steps in the host. We previously reported that measles virus (MeV), which possesses an RNA genome, induces rapid antiviral responses, followed by comprehensive downregulation of host gene expression in epithelial cells. Interestingly, gene ontology analysis indicated that genes encoding mitochondrial proteins are enriched among the list of downregulated genes. To evaluate mitochondrial stress after MeV infection, we first observed the mitochondrial morphology of infected cells and found that significantly elongated mitochondrial networks with a hyperfused phenotype were formed. In addition, an increased amount of mitochondrial DNA (mtDNA) in the cytosol was detected during progression of infection. Based on these results, we show that cytosolic mtDNA released from hyperfused mitochondria during MeV infection is captured by cGAS and causes consequent priming of the DNA sensing pathway in addition to canonical RNA sensing. We also ascertained the contribution of cGAS to the in vivo pathogenicity of MeV. In addition, we found that other viruses that induce downregulation of mitochondrial biogenesis as seen for MeV cause similar mitochondrial hyperfusion and cytosolic mtDNA-priming antiviral responses. These findings indicate that the mtDNA-activated cGAS pathway is critical for full innate control of certain viruses, including RNA viruses that cause mitochondrial stress.


Assuntos
Imunidade Inata/imunologia , Sarampo/metabolismo , Mitocôndrias/metabolismo , Nucleotidiltransferases/metabolismo , Animais , Regulação para Baixo , Humanos , Vírus do Sarampo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/virologia , Biogênese de Organelas , Infecções por Vírus de RNA/metabolismo , Vírus de RNA
11.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34344827

RESUMO

Viruses modulate mitochondrial processes during infection to increase biosynthetic precursors and energy output, fueling virus replication. In a surprising fashion, although it triggers mitochondrial fragmentation, the prevalent pathogen human cytomegalovirus (HCMV) increases mitochondrial metabolism through a yet-unknown mechanism. Here, we integrate molecular virology, metabolic assays, quantitative proteomics, and superresolution confocal microscopy to define this mechanism. We establish that the previously uncharacterized viral protein pUL13 is required for productive HCMV replication, targets the mitochondria, and functions to increase oxidative phosphorylation during infection. We demonstrate that pUL13 forms temporally tuned interactions with the mitochondrial contact site and cristae organizing system (MICOS) complex, a critical regulator of cristae architecture and electron transport chain (ETC) function. Stimulated emission depletion superresolution microscopy shows that expression of pUL13 alters cristae architecture. Indeed, using live-cell Seahorse assays, we establish that pUL13 alone is sufficient to increase cellular respiration, not requiring the presence of other viral proteins. Our findings address the outstanding question of how HCMV targets mitochondria to increase bioenergetic output and expands the knowledge of the intricate connection between mitochondrial architecture and ETC function.


Assuntos
Infecções por Citomegalovirus/metabolismo , Citomegalovirus/fisiologia , Mitocôndrias/metabolismo , Mitocôndrias/virologia , Proteínas Virais/metabolismo , Citomegalovirus/metabolismo , Citomegalovirus/patogenicidade , Infecções por Citomegalovirus/virologia , Transporte de Elétrons , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Mitocôndrias/ultraestrutura , Fosforilação Oxidativa , Proteínas Virais/genética , Replicação Viral
12.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34360945

RESUMO

Mitochondria are vital intracellular organelles that play an important role in regulating various intracellular events such as metabolism, bioenergetics, cell death (apoptosis), and innate immune signaling. Mitochondrial fission, fusion, and membrane potential play a central role in maintaining mitochondrial dynamics and the overall shape of mitochondria. Viruses change the dynamics of the mitochondria by altering the mitochondrial processes/functions, such as autophagy, mitophagy, and enzymes involved in metabolism. In addition, viruses decrease the supply of energy to the mitochondria in the form of ATP, causing viruses to create cellular stress by generating ROS in mitochondria to instigate viral proliferation, a process which causes both intra- and extra-mitochondrial damage. SARS-COV2 propagates through altering or changing various pathways, such as autophagy, UPR stress, MPTP and NLRP3 inflammasome. Thus, these pathways act as potential targets for viruses to facilitate their proliferation. Autophagy plays an essential role in SARS-COV2-mediated COVID-19 and modulates autophagy by using various drugs that act on potential targets of the virus to inhibit and treat viral infection. Modulated autophagy inhibits coronavirus replication; thus, it becomes a promising target for anti-coronaviral therapy. This review gives immense knowledge about the infections, mitochondrial modulations, and therapeutic targets of viruses.


Assuntos
Autofagia , COVID-19/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/virologia , Animais , Autofagia/efeitos dos fármacos , Humanos , Dinâmica Mitocondrial/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Viroses/tratamento farmacológico , Viroses/metabolismo , Tratamento Farmacológico da COVID-19
13.
J Neurosci ; 41(25): 5338-5349, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162747

RESUMO

Clinical reports suggest that the coronavirus disease-19 (COVID-19) pandemic caused by severe acute respiratory syndrome (SARS)-coronavirus-2 (CoV-2) has not only taken millions of lives, but has also created a major crisis of neurologic complications that persist even after recovery from the disease. Autopsies of patients confirm the presence of the coronaviruses in the CNS, especially in the brain. The invasion and transmission of SARS-CoV-2 in the CNS is not clearly defined, but, because the endocytic pathway has become an important target for the development of therapeutic strategies for COVID-19, it is necessary to understand endocytic processes in the CNS. In addition, mitochondria and mechanistic target of rapamycin (mTOR) signaling pathways play a critical role in the antiviral immune response, and may also be critical for endocytic activity. Furthermore, dysfunctions of mitochondria and mTOR signaling pathways have been associated with some high-risk conditions such as diabetes and immunodeficiency for developing severe complications observed in COVID-19 patients. However, the role of these pathways in SARS-CoV-2 infection and spread are largely unknown. In this review, we discuss the potential mechanisms of SARS-CoV-2 entry into the CNS and how mitochondria and mTOR pathways might regulate endocytic vesicle-mitochondria interactions and dynamics during SARS-CoV-2 infection. The mechanisms that plausibly account for severe neurologic complications with COVID-19 and potential treatments with Food and Drug Administration-approved drugs targeting mitochondria and the mTOR pathways are also addressed.


Assuntos
COVID-19/complicações , Doenças do Sistema Nervoso/virologia , Neurônios/virologia , Animais , COVID-19/metabolismo , COVID-19/patologia , COVID-19/virologia , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/virologia , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/patologia , Neurônios/metabolismo , SARS-CoV-2/patogenicidade , Serina-Treonina Quinases TOR/metabolismo , Síndrome Pós-COVID-19 Aguda , Tratamento Farmacológico da COVID-19
14.
Pharmacol Ther ; 224: 107825, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33662449

RESUMO

Coronaviruses (CoVs) are a group of single stranded RNA viruses, of which some of them such as SARS-CoV, MERS-CoV, and SARS-CoV-2 are associated with deadly worldwide human diseases. Coronavirus disease-2019 (COVID-19), a condition caused by SARS-CoV-2, results in acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) associated with high mortality in the elderly and in people with underlying comorbidities. Results from several studies suggest that CoVs localize in mitochondria and interact with mitochondrial protein translocation machinery to target their encoded products to mitochondria. Coronaviruses encode a number of proteins; this process is essential for viral replication through inhibiting degradation of viral proteins and host misfolded proteins including those in mitochondria. These viruses seem to maintain their replication by altering mitochondrial dynamics and targeting mitochondrial-associated antiviral signaling (MAVS), allowing them to evade host innate immunity. Coronaviruses infections such as COVID-19 are more severe in aging patients. Since endogenous melatonin levels are often dramatically reduced in the aged and because it is a potent anti-inflammatory agent, melatonin has been proposed to be useful in CoVs infections by altering proteasomal and mitochondrial activities. Melatonin inhibits mitochondrial fission due to its antioxidant and inhibitory effects on cytosolic calcium overload. The collective data suggests that melatonin may mediate mitochondrial adaptations through regulating both mitochondrial dynamics and biogenesis. We propose that melatonin may inhibit SARS-CoV-2-induced cell damage by regulating mitochondrial physiology.


Assuntos
Tratamento Farmacológico da COVID-19 , Melatonina/farmacologia , Mitocôndrias/patologia , Idoso , Animais , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , COVID-19/complicações , COVID-19/virologia , Infecções por Coronavirus/complicações , Infecções por Coronavirus/virologia , Feminino , Humanos , Melatonina/administração & dosagem , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/virologia , Síndrome Respiratória Aguda Grave/complicações , Síndrome Respiratória Aguda Grave/virologia , Replicação Viral
15.
PLoS Pathog ; 17(2): e1009340, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33596274

RESUMO

Influenza virus infections are major public health threats due to their high rates of morbidity and mortality. Upon influenza virus entry, host cells experience modifications of endomembranes, including those used for virus trafficking and replication. Here we report that influenza virus infection modifies mitochondrial morphodynamics by promoting mitochondria elongation and altering endoplasmic reticulum-mitochondria tethering in host cells. Expression of the viral RNA recapitulates these modifications inside cells. Virus induced mitochondria hyper-elongation was promoted by fission associated protein DRP1 relocalization to the cytosol, enhancing a pro-fusion status. We show that altering mitochondrial hyper-fusion with Mito-C, a novel pro-fission compound, not only restores mitochondrial morphodynamics and endoplasmic reticulum-mitochondria contact sites but also dramatically reduces influenza replication. Finally, we demonstrate that the observed Mito-C antiviral property is directly connected with the innate immunity signaling RIG-I complex at mitochondria. Our data highlight the importance of a functional interchange between mitochondrial morphodynamics and innate immunity machineries in the context of influenza viral infection.


Assuntos
Antivirais/administração & dosagem , Retículo Endoplasmático/patologia , Interações Hospedeiro-Patógeno , Vírus da Influenza A/efeitos dos fármacos , Influenza Humana/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Preparações Farmacêuticas/administração & dosagem , Retículo Endoplasmático/virologia , Humanos , Imunidade Inata , Influenza Humana/patologia , Influenza Humana/virologia , Mitocôndrias/patologia , Mitocôndrias/virologia , Replicação Viral
16.
Biochim Biophys Acta Gen Subj ; 1865(3): 129839, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33412226

RESUMO

Mitochondria are multi-functioning organelles that participate in a wide range of biologic processes from energy metabolism to cellular suicide. Mitochondria are also involved in the cellular innate immune response against microorganisms or environmental irritants, particularly in mammals. Mitochondrial-mediated innate immunity is achieved by the activation of two discrete signaling pathways, the NLR family pyrin domain-containing 3 inflammasomes and the retinoic acid-inducible gene I-like receptor pathway. In both pathways, a mitochondrial outer membrane adaptor protein, called mitochondrial antiviral signaling MAVS, and mitochondria-derived components play a key role in signal transduction. In this review, we discuss current insights regarding the fundamental phenomena of mitochondrial-related innate immune responses, and review the specific roles of various mitochondrial subcompartments in fine-tuning innate immune signaling events. We propose that specific targeting of mitochondrial functions is a potential therapeutic approach for the management of infectious diseases and autoinflammatory disorders with an excessive immune response.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Mitocôndrias/imunologia , Infecções por Vírus de RNA/imunologia , Vírus de RNA/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/imunologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Humanos , Inflamassomos , MicroRNAs/genética , MicroRNAs/imunologia , Mitocôndrias/genética , Mitocôndrias/virologia , Membranas Mitocondriais/imunologia , Membranas Mitocondriais/virologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Infecções por Vírus de RNA/genética , Infecções por Vírus de RNA/patologia , Infecções por Vírus de RNA/virologia , Vírus de RNA/genética , Vírus de RNA/patogenicidade , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Transdução de Sinais
17.
Sci Rep ; 11(1): 3, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420163

RESUMO

SARS-CoV-2 induces a muted innate immune response compared to other respiratory viruses. Mitochondrial dynamics might partially mediate this effect of SARS-CoV-2 on innate immunity. Polypeptides encoded by open reading frames of SARS-CoV and SARS-CoV-2 have been shown to localize to mitochondria and disrupt Mitochondrial Antiviral Signaling (MAVS) protein signaling. Therefore, we hypothesized that SARS-CoV-2 would distinctly regulate the mitochondrial transcriptome. We analyzed multiple publicly available RNASeq data derived from primary cells, cell lines, and clinical samples (i.e., BALF and lung). We report that SARS-CoV-2 did not dramatically regulate (1) mtDNA-encoded gene expression or (2) MAVS expression, and (3) SARS-CoV-2 downregulated nuclear-encoded mitochondrial (NEM) genes related to cellular respiration and Complex I.


Assuntos
COVID-19/virologia , DNA Mitocondrial/genética , Mitocôndrias/genética , SARS-CoV-2 , Transcriptoma , Linhagem Celular , Humanos , Mitocôndrias/virologia
18.
Cell Microbiol ; 23(4): e13302, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33432690

RESUMO

With no available therapies, infections with Zika virus (ZIKV) constitute a major public health concern as they can lead to congenital microcephaly. In order to generate an intracellular environment favourable to viral replication, ZIKV induces endomembrane remodelling and the morphogenesis of replication factories via enigmatic mechanisms. In this study, we identified the AAA+ type ATPase valosin-containing protein (VCP) as a cellular interaction partner of ZIKV non-structural protein 4B (NS4B). Importantly, its pharmacological inhibition as well as the expression of a VCP dominant-negative mutant impaired ZIKV replication. In infected cells, VCP is relocalised to large ultrastructures containing both NS4B and NS3, which are reminiscent of dengue virus convoluted membranes. Moreover, short treatment with the VCP inhibitors NMS-873 or CB-5083 drastically decreased the abundance and size of ZIKV-induced convoluted membranes. Furthermore, NMS-873 treatment inhibited ZIKV-induced mitochondria elongation previously reported to be physically and functionally linked to convoluted membranes in case of the closely related dengue virus. Finally, VCP inhibition resulted in enhanced apoptosis of ZIKV-infected cells strongly suggesting that convoluted membranes limit virus-induced cytopathic effects. Altogether, this study identifies VCP as a host factor required for ZIKV life cycle and more precisely, for the maintenance of viral replication factories. Our data further support a model in which convoluted membranes regulate ZIKV life cycle by impacting on mitochondrial functions and ZIKV-induced death signals in order to create a cytoplasmic environment favourable to viral replication.


Assuntos
Adenosina Trifosfatases/metabolismo , Apoptose , Regulação da Expressão Gênica , Proteína com Valosina/genética , Proteína com Valosina/metabolismo , Zika virus/genética , Zika virus/fisiologia , Acetanilidas/farmacologia , Adenosina Trifosfatases/genética , Animais , Benzotiazóis/farmacologia , Linhagem Celular Tumoral , Chlorocebus aethiops , Células HEK293 , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos/genética , Humanos , Indóis/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/virologia , Pirimidinas/farmacologia , Proteína com Valosina/antagonistas & inibidores , Células Vero
19.
Autophagy ; 17(6): 1296-1315, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32401605

RESUMO

Mitochondria respond to many cellular functions and act as central hubs in innate immunity against viruses. This response is notably due to their role in the activation of interferon (IFN) signaling pathways through the activity of MAVS (mitochondrial antiviral signaling protein) present at the mitochondrial surface. Here, we report that the BHRF1 protein, a BCL2 homolog encoded by Epstein-Barr virus (EBV), inhibits IFNB/IFN-ß induction by targeting the mitochondria. Indeed, we have demonstrated that BHRF1 expression modifies mitochondrial dynamics and stimulates DNM1L/Drp1-mediated mitochondrial fission. Concomitantly, we have shown that BHRF1 is pro-autophagic because it stimulates the autophagic flux by interacting with BECN1/Beclin 1. In response to the BHRF1-induced mitochondrial fission and macroautophagy/autophagy stimulation, BHRF1 drives mitochondrial network reorganization to form juxtanuclear mitochondrial aggregates known as mito-aggresomes. Mitophagy is a cellular process, which can specifically sequester and degrade mitochondria. Our confocal studies uncovered that numerous mitochondria are present in autophagosomes and acidic compartments using BHRF1-expressing cells. Moreover, mito-aggresome formation allows the induction of mitophagy and the accumulation of PINK1 at the mitochondria. As BHRF1 modulates the mitochondrial fate, we explored the effect of BHRF1 on innate immunity and showed that BHRF1 expression could prevent IFNB induction. Indeed, BHRF1 inhibits the IFNB promoter activation and blocks the nuclear translocation of IRF3 (interferon regulatory factor 3). Thus, we concluded that BHRF1 can counteract innate immunity activation by inducing fission of the mitochondria to facilitate their sequestration in mitophagosomes for degradation.Abbreviations: 3-MA: 3-methyladenine; ACTB: actin beta; BCL2: BCL2 apoptosis regulator; CARD: caspase recruitment domain; CCCP: carbonyl cyanide 3-chlorophenylhydrazone; CI: compaction index; CQ: chloroquine; DAPI: 4',6-diamidino-2-phenylindole, dihydrochloride; DDX58/RIG-I: DExD/H-box helicase 58; DNM1L/Drp1: dynamin 1 like; EBSS: Earle's balanced salt solution; EBV: Epstein-Barr virus; ER: endoplasmic reticulum; EV: empty vector; GFP: green fluorescent protein; HEK: human embryonic kidney; IFN: interferon; IgG: immunoglobulin G; IRF3: interferon regulatory factor 3; LDHA: lactate dehydrogenase A; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAVS: mitochondrial antiviral signaling protein; MMP: mitochondrial membrane potential; MOM: mitochondrial outer membrane; PINK1: PTEN induced kinase 1; RFP: red fluorescent protein; ROS: reactive oxygen species; SQSTM1/p62: sequestosome 1; STING1: stimulator of interferon response cGAMP interactor 1; TOMM20: translocase of outer mitochondrial membrane 20; VDAC: voltage dependent anion channel.


Assuntos
Autofagia/imunologia , Interferons/metabolismo , Mitocôndrias/virologia , Dinâmica Mitocondrial/fisiologia , Mitofagia/fisiologia , Proteínas Virais/metabolismo , Autofagossomos/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Infecções por Vírus Epstein-Barr/metabolismo , Humanos , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias/metabolismo
20.
Free Radic Biol Med ; 163: 153-162, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33347987

RESUMO

Nitric oxide (NO) is a free radical playing an important pathophysiological role in cardiovascular and immune systems. Recent studies reported that NO levels were significantly lower in patients with COVID-19, which was suggested to be closely related to vascular dysfunction and immune inflammation among them. In this review, we examine the potential role of NO during SARS-CoV-2 infection from the perspective of the unique physical, chemical and biological properties and potential mechanisms of NO in COVID-19, as well as possible therapeutic strategies using inhaled NO. We also discuss the limits of NO treatment, and the future application of this approach in prevention and therapy of COVID-19.


Assuntos
Anti-Inflamatórios/uso terapêutico , Anticoagulantes/uso terapêutico , Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Pulmão/efeitos dos fármacos , Óxido Nítrico/uso terapêutico , Administração por Inalação , Anti-Inflamatórios/sangue , Anticoagulantes/sangue , Antivirais/sangue , COVID-19/sangue , COVID-19/patologia , COVID-19/virologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Células Endoteliais/virologia , Humanos , Inflamação , Pulmão/irrigação sanguínea , Pulmão/virologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/virologia , Óxido Nítrico/sangue , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade , Índice de Gravidade de Doença , Vasodilatação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...